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What is the systems approach?

From The Systems Approach by S. Ramo and R. K. St.Clair:

“It is … a reasoned and integrated, rather than fragmentary, look at problems.”

“It starts by definition of goals and ends with a description of a harmonious, 

optimum ensemble of the required humans and machines with such a corollary 

network of flow of information and materials as will cause this system to operate to 

solve the problem and fill the need.”

I would like to impress upon you that regardless of how small your assigned task is, 

you should always try to understand the large picture first. That is, where the 

requirements are coming from? Is there better approach to your task in terms of 

technology, materials, etc.? Your goal should always be to participate in the system 

design, even if passively, keep your eyes open, be a team member. You must 

understand how the overall goals affect the particular sub-system or component you 

are working on and, vice versa, how your component is affecting the global design.
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Accelerating RF systems

� The main purpose of using RF cavities in accelerators 

is to add (remove) energy to charged-particle beams at 

a fast acceleration rate.

� The highest achievable gradient, however, is not 

always optimal for an accelerator.  There are other 

factors (both machine-dependent and technology-

dependent) that determine operating gradient of RF 

cavities and influence the cavity design, such as 

accelerator cost optimization, maximum power through 

an input coupler, necessity to extract HOM power, etc.

� Moreover, although the cavity is the heart, the central 

part of an accelerating module and RF system, it is 

only one of many parts and its design cannot be easily 

decoupled from the design of the whole system.

� In many cases requirements are competing, hence 

using the systems engineering approach should be 

used.
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Auxiliary systems: AC power, cooling water, …
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� Pulsed operation →→→→ Lorentz-force detuning → mechanical design, fast tuner for 

compensation, cavity shape optimization

� CW operation →→→→ RF power dissipation in cavity walls → cavity shape optimization, operating 

temperature choice, frequency choice, thermal analysis

� High beam current →→→→ beam instability due to interaction with cavity higher-order modes →
cavity and HOM absorber design for strong damping 

� High beam current →→→→ heavy beam loading → tuner design to compensate reactive 

component, RF controls

� Beam quality (emittance) preservation →→→→ minimize parasitic interactions (coupler kick, 

HOMs) → input coupler and cavity design, frequency choice

� High beam power →→→→ low Q
ext
, availability of high-power RF sources → input coupler design, 

frequency choice

� Low beam power →→→→ high Q
ext
, microphonic noise → mechanical design, feedbacks

Some of machine-dependent issues
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SRF linac diagrams: big picture
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SRF system optimization for an ERL

In order to not lose the forest behind the trees, we will consider an example of SRF system 

optimization for Cornell ERL as presented by M. Liepe at ERL’09 Workshop. 

Most conclusions should be valid for other ERLs.

Objectives

� Minimize cost (capital and operational)

� Meet beam specifications

� Maximize availability and reliability

Constrains

� Cavity constrains (Q0, field emission,…)

� Site constrains

� …

� Optimization is only as specific as objectives and constrains can be specified.

� It is important to be realistic: neither too pessimistic, nor too optimistic.

Need to identify risk / impact parameters

� Cavity intrinsic Q→ cost

� Microphonics level / peak cavity detuning → cost

� …
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Optimization parameters

Optimization:

� Operating temperature and RF frequency → AC power (cost of operation)

� Operating field gradient, Q0→ reliability and cost

� Loaded Q, RF power, and microphonics→ cost

� Cavity design, HOM damping and BBU → beam specification, cost

Tcav, fTM010 , Eacc, Q0 , QL , PRF,peak, IBBU ,… =  ?

Some of these parameters are given by the state-of-the-art in SRF technology, others are found by 

optimizations.

Principal beam parameters
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Step I
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Dynamic cavity losses



June 24, 2009 USPAS 2009, S. Belomestnykh, Lecture 7: Systems engineering 11

Dynamic cavity losses (2)
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Cooling power for RF losses at a given 
Eacc
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Choice of operating temperature
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Choice of operating frequency
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Choice of operating frequency (2)
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Conclusion for step I
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Step II
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SRF linac cost estimate model
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Cost dependence on Eacc
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Optimal field gradient
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Main linac cost distribution
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Field emission
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Conclusion A for step II
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Conclusion B for step II
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Step III
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Cost vs. peak cavity detuning
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Realistic level of microphonics
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Conclusion for step III
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Step IV



June 24, 2009 USPAS 2009, S. Belomestnykh, Lecture 7: Systems engineering 30

Cost vs. fundamental mode R/Q 
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Cost vs. # of cells per cavity 
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Be realistic! 
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HOM absorber: ideal vs. real 
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Effect of small cavity deformations 
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7-cell cavities with small shape 
deformations 
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Simulation results for ±1/16 mm 
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Conclusion for step IV 
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Outlook 
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What have we learned?

� Understand the large picture first!

� Machine parameters are always come first.

� All subsystems are interconnected and very often an iterative process is necessary.

� A carefully set up optimization algorithm and system model can sometimes bring 

unexpected results.

� It is important to be realistic: neither too pessimistic, nor too optimistic.

�Starting with the next lecture we will go step by step through design approaches to 

different components and subsystems.


